Role of the ER/NO/cGMP Signaling Pathway in the Promotion of Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Actaea racemosa Extract
نویسندگان
چکیده
Purpose/Objective. To investigate the effect of Actaea racemosa (AR) extract on in vitro osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) via the ER/NO/cGMP signaling pathway. Methods/Materials. Rat BMSCs were treated with osteogenic differentiation-inducing medium containing AR; estrogen receptor antagonist, ICI 182,780 (10-6 mol/L); and nitric oxide synthase inhibitor, L-nitro arginine methyl ester (L-NAME, 6 × 10-3 mol/L). Markers of osteogenic differentiation (alkaline phosphatase [ALP] activity, osteocalcin secretion, and calcium ion deposit levels) and the levels of key signaling molecules (nitric oxide synthase [NOS], nitric oxide [NO], and cyclic guanosine monophosphate [cGMP]) were assessed. Results. AR (10-1-10-6 g/L) increased ALP activity in a dose-dependent manner, and the highest ALP, osteocalcin, and osteoprotegerin activities were achieved at an AR concentration of 10-4 g/L. Therefore, the concentration of 10-4 g/L was used for promoting osteogenic differentiation of BMSCs in subsequent analyses. At this concentration, AR increased the levels of NO and cGMP, and such effects could be blocked by the estrogen receptor antagonist (ICI 182,780) and nitric oxide synthase inhibitor (L-NAME). Conclusion. AR induced osteogenic differentiation of rat BMSCs through the ER/NO/cGMP signaling pathway. This finding provides the theoretical foundation for the mechanism of AR in the treatment of postmenopausal osteoporosis.
منابع مشابه
The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells
Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملPara-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization
Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016